

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level In Physics (WPH15/01) Paper 5: Thermodynamics, Radiation, Oscillations and Cosmology

Question Number	Answer	Mark
1	B is the correct answer	(1)
	A is not the correct answer, as fission produces radioactive isotopes. C is not the correct answer, as a very high temperature is only required for fusion.	
2	D is not the correct answer, as only fission occurs spontaneously.	(1)
2	B is the only correct answer A is not the correct answer, as for volume to be proportional to temperature, the temperature must be measured in kelvin. C is not the correct answer, as the law only applies to a fixed mass of gas. D is not the correct answer, as the volume occupied by the gas must stay	(1)
	constant	
3	C is the correct answer	(1)
	A is not the correct answer, as alpha radiation would be stopped by a sheet of paper B is not the correct answer, as some gamma radiation would penetrate the lead sheet.	
	D is not the correct answer, as some gamma radiation would penetrate the lead sheet.	
4	D is the correct answer	(1)
	A is not the correct answer, as the temperature scale must be a reverse logarithmic scale B is not the correct answer, as the temperature scale must be a reverse scale C is not the correct answer, as the temperature scale must be a logarithmic scale	
5	D is the correct answer,	(1)
	A is not the correct answer, as each decay path is defined. B is not the correct answer, as half of the unstable nuclei have decayed after a half-life.	
6	C is not the correct answer, as this is a definition of spontaneous decay.	(1)
U	D is the correct answer, as $z = \left(\frac{H_0}{c}\right)d$, so $H_0 = (\text{gradient}) \times c$	(1)
7	A is the correct answer, as $\Delta E_{\text{grav}} = -GMm\left(\frac{1}{R} - \frac{1}{2R}\right)$	(1)
8	C is the correct answer, as $l = \frac{T^2g}{4\pi^2}$	(1)
9	C is the correct answer, as $I = \frac{L}{4\pi d^2}$, so $\frac{L_C}{L_S} = \frac{I_C \times d_C^2}{I_S \times d_S^2} = \frac{I_C}{I_S} \times \frac{d_C^2}{d_S^2}$	(1)
10	D is the correct answer. as both the amplitude and the natural frequency increase	(1)

Question Number	Answer		Mark
11	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of volume flow rate to calculate V	(1)	
	Use of $\rho = \frac{m}{v}$ to calculate mass of shower water	(1)	
	Use of $\frac{\text{Energy used to heat bathwater}}{\text{Energy used to heat shower water}}$ Or calculates $10 \times (\text{energy used to heat shower water})$	(1)	
	Taking a bath uses 12 times as much energy Or $1.14 \times 10^7 J > 9.34 \times 10^6 J$ so bath uses more than $10 \times$ shower energy	(1)	5
	Example of calculation		
	$\Delta E = 160 \text{ kg} \times 4180 \text{ J kg}^{-1} \text{K}^{-1} \times (32 - 15) \text{K} = 1.14 \times 10^7 \text{J}$		
	In 1 second, $m = 1.00 \times 10^3 \text{ kg m}^{-3} \times 1.8 \times 10^{-5} \text{ m}^3 = 0.018 \text{ kg}$		
	$m = 0.018 \text{ kg s}^{-1} \times 9 \times 60 \text{ s} = 9.72 \text{ kg}$		
	$\Delta E = 9.72 \text{ kg} \times 4180 \text{ J kg}^{-1} \text{ K}^{-1} \times (38 - 15) \text{ K} = 9.34 \times 10^5 \text{ J}$		
	Energy ratio = $\frac{1.14 \times 10^7 \text{J}}{9.34 \times 10^5 \text{J}} = 12.2$		
	Total for question 11		5

Question Number	Answer		Mark
12	Use of $pV = NkT$ [must see substitution of values of p , k and T]	(1)	
	Conversion of temperature to kelvin	(1)	
	Use of $\rho = \frac{m}{V}$ [allow substitution of mass of one molecule]	(1)	
	Use of $m = N \times \text{mass}$ of a molecule	(1)	
	$\rho = 180 \text{ kg m}^{-3}$	(1)	5
	$\frac{\text{Example of calculation}}{\rho = \frac{N \times 5.3 \times 10^{-26} \text{ kg}}{V}} = \frac{p \times 5.3 \times 10^{-26} \text{ kg}}{kT}$ $\therefore \rho = \frac{1.4 \times 10^7 \text{Pa} \times 5.3 \times 10^{-26} \text{ kg}}{1.38 \times 10^{-23} \text{m}^2 \text{ kg s}^{-2} \text{ K}^{-1} \times (273 + 25) \text{K}} = 180.4 \text{ kg m}^{-3}$		
	Total for question 12		5

Questio n Number			Answer		Mark
*13			udent's ability to show a cohokages and fully-sustained reas		
			icative content and for how the of reasoning.	he answer is	
	The following structure and		how the marks should be awoning.	varded for	
				Number of marks awarded for structure of answer and sustained line of reasoning	
	linkages and demonstrate	d fully sustained throughout		2	
	lines of reas	oning	ured with some linkages and		
	Answer has unstructured		between points and is	0	
			e sum of marks for indicative es of reasoning	content and the	
	IC points	IC mark	Max linkage mark 2	Max final mark 6	
	5	3	2	5	
	4	3	1	4	
	3	2	1	3	
	2	2	0	2	
	0	0	0	0	
	Indicative co	ontent (stellar) para	allax to determine distance		
	IC2 Mea Or M	sure the inte Measure λ _{max}	nsity of radiation from the and use Wien's law to detent standard candle		
	cand Or U	le Jse the Hertz	re law to calculate the <u>lum</u> zsprung-Russell diagram to e standard candle		
	IC4 Loca	nte standard	candle (in nearby galaxy)		
	IC5 Stan	dard candle	has a known luminosity		
			y of radiation from the star w to calculate <u>distance</u> to r		6

Alterr	native for IC1, IC2 and IC3:	
IC1	Identify/observe a (Cepheid) variable star	
IC2	Measure the period/frequency of intensity variation	
IC3	Use a known relationship between period and luminosity to calculate the luminosity of the star	
Total	for question 13	6

Question Number	Answer		Mark
14(a)	Determines period from at least 2 cycles [to within 1 square]	(1)	
	Converts period into hours	(1)	
	$T = 12.0 \rightarrow 13.0 \text{ (hours)}$	(1)	3
	Example of calculation		
	$13T = (6.9 - 0.2) \times 24 \text{ hours} = 160.8 \text{ hours}$		
	$T = \frac{160.8 \text{ hours}}{13} = 12.4 \text{ hours}$		
14(b)			
	Period of the tide matches natural period of oscillation of water in the bay [accept references to frequency]	(1)	
	Efficient/maximum transfer of energy (into water in the bay)		
	Or Resonance occurs	(1)	
	Amplitude (of tide) increases		
	Or There is a maximum amplitude	(1)	3
	Total for question 14		6

Question Number	Answer		Mark
15(a)	Use of $z = \frac{\Delta \lambda}{\lambda}$	(1)	
	$\lambda_o = 1.60 \times 10^{-6} \text{ m}$	(1)	2
	Example of calculation		
	$z = \frac{\Delta \lambda}{\lambda} = \frac{(\lambda_0 - 134 \times 10^{-9} \text{ m})}{134 \times 10^{-9} \text{ m}} = 10.96$		
15(b)	d between 13 and 14 (× 10^9 ly)	(1)	
	Use of $s = ut$	(1)	
	$s = 1.3 \times 10^{26}$ (m) [Accept answers in range $1.2 \times 10^{26} \rightarrow 1.3 \times 10^{26}$]	(1)	3
	Example of calculation		
	$d = 13.4 \times 10^9 \mathrm{ly}$		
	$1 \text{ ly} = 3.0 \times 10^8 \text{ m s}^{-1} \times 3.15 \times 10^7 \text{ s} = 9.45 \times 10^{15} \text{ m}$		
	$s = 9.45 \times 10^{15} \text{ m} \times 13.4 \times 10^9 = 1.26 \times 10^{26} \text{ m}$		
15(c)	Very distant galaxies have (very) large red shifts	(1)	
	So their light has become infrared when it arrives (at the telescope) [MP2: Do not credit statements that light is emitted in IR region of spectrum]	(1)	2
	Total for question 15		7

Question Number	Answer		Mark
16(a)	$f_{\rm max}$ read from graph	(1)	
	Use of $c = f\lambda$	(1)	
	Use of $\lambda_{max}T = 2.898 \times 10^{-3} \text{ m K}$	(1)	
	T = 3100 (K)	(1)	4
	Example of calculation		
	$f_{\text{max}} = 3.2 \times 10^{14} \text{ Hz}$		
	$\lambda_{\text{max}} = \frac{3.0 \times 10^8 \text{ m s}^{-1}}{3.2 \times 10^{14} \text{ Hz}} = 9.38 \times 10^{-7} \text{ m}$		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{9.38 \times 10^{-7} \text{ m}} = 3090 \text{ K}$		
16(b)	Use of $A = 4\pi r^2$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	$L = 4.52 \times 10^{24} \text{ W [ecf from (a)]}$ Or $T = 5300 \text{ K [ecf from (a)]}$	(1)	
	Conclusion made from comparison of calculated L with 10% of luminosity of the Sun $[3.83 \times 10^{25} \mathrm{W}]$ Or conclusion made from comparison of T for a star with 10% of luminosity of the Sun with T calculated in (a)	(1)	4
	Example of calculation		
	$L = 4\pi (2.62 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (3100 \text{ K})^4$		
	$L = 4.52 \times 10^{24} W$ $\frac{L}{L_{Sun}} \times 100\% = \frac{4.52 \times 10^{24} W}{3.83 \times 10^{26} W} \times 100\% = 1.18\%$		
	Luminosity of Gliese-876 is less than 10% of Sun's luminosity. so claim is correct.		
	Temperature of Gliese-876 is less than surface temperature of a star with 10% of the Sun's luminosity, so claim is correct.		
	Total for question 16		8

Question Number	Answer		Mark
17(a)(i)	Use of $F = \frac{GMm}{r^2}$	(1)	
	$F = 7.3 \times 10^{17} (\text{N})$	(1)	2
	Example of calculation		
	$F = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 1.99 \times 10^{30} \text{ kg} \times 9.38 \times 10^{20} \text{ kg}}{(4.14 \times 10^{11} \text{ m})^2}$ $\therefore F = 7.26 \times 10^{17} \text{ N}$		
17(a)(ii)	Use of $F = m\omega^2 r$	(1)	
	Use of $\omega = \frac{2\pi}{T}$	(1)	
	Conversion to years	(1)	
	T = 4.6 year [ecf from (i)]	(1)	
	Or		
	Use of $F = \frac{mv^2}{r}$	(1)	
	Use of $v = \frac{2\pi r}{T}$	(1)	
	Conversion to years	(1)	
	T = 4.6 year [ecf from (i)]	(1)	4
	Example of calculation		
	$\omega = \sqrt{\frac{F}{mr}} = \sqrt{\frac{7.26 \times 10^{17} \text{ N}}{9.38 \times 10^{20} \text{ kg} \times 4.14 \times 10^{11} \text{ m}}} = 4.32 \times 10^{-8} \text{ rad s}^{-1}$		
	$T = \frac{2\pi}{\omega} = \frac{2\pi \text{ rad}}{4.32 \times 10^{-8} \text{ rad s}^{-1}} = 1.45 \times 10^{8} \text{ s}$ $\therefore T = \frac{1.45 \times 10^{8} \text{ s}}{3.15 \times 10^{7} \text{ s year}^{-1}} = 4.61 \text{ year}$		

	Total for question 17		9
			_
	$\therefore \frac{1}{g_m} = \frac{1}{3.7 \text{ N kg}^{-1}} = 0.0765$		
	$\therefore \frac{g_c}{g_m} = \frac{0.283 \text{ N kg}^{-1}}{3.7 \text{ N kg}^{-1}} = 0.0765$		
	$g_C = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 9.38 \times 10^{20} \text{ kg}}{(4.7 \times 10^5 \text{ m})^2} = 0.283 \text{ N kg}^{-1}$		
	$6.67 \times 10^{-11} \mathrm{M} \mathrm{m}^2 \mathrm{kg}^{-2} \times 0.20 \times 10^{20} \mathrm{kg}$		
	Example of calculation		
	$g_c = 0.283 \text{ N kg}^{-1} \text{ and } 5\% \text{ of } g_m = 0.185 \text{ N kg}^{-1}, \text{ so claim is inaccurate}$		
	Or	(1)	3
	g_c is 7.7% of g_m so claim is inaccurate		
	Or 5% of g for Mercury calculated	(1)	
	Ratio of field strengths calculated		
17(b)	Use of $g = \frac{GM}{r^2}$ to calculate g for Ceres	(1)	

_

Question Number	Answer		Mark
18(a)(i)	X is a neutron	(1)	1
18(a)(ii)	Decrease in mass calculated	(1)	
	Energy in (G)eV calculated from mass difference	(1)	
	Conversion of energy in eV to J	(1)	
	Energy released = 8.0×10^{-14} (J)	(1)	4
	Example of calculation		
	$\Delta m = (25.1333 + 3.7274) \text{ GeV/c}^2 - (27.9206 + 0.9396) \text{ GeV/c}^2$ = $5.00 \times 10^{-4} \text{ GeV/c}^2$		
	$\Delta E = 5.00 \times 10^{-4} \text{ GeV}$		
	$\Delta E = 5.00 \times 10^{-4} \times 10^{9} \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 8.0 \times 10^{-14} \text{ J}$		
18(b)	Positrons annihilate with electrons to produce gamma radiation Gamma radiation can penetrate the body	(1) (1)	
	Half life is long enough to allow the procedure to be performed Half life is short enough to avoid unnecessarily large radiation dose	(1) (1)	4
	Total for question 18		9

Question Number	Answer		Mark
19(a)	(When the object is displaced):		
	there is a (resultant) force that is proportional to the displacement from the equilibrium position	(1)	
	and (always) acting towards the equilibrium position [Accept force is in the opposite direction to displacement]	(1)	2
	(Accept 'acceleration' for 'force') (For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position, do not accept mean position)		
19(b)(i)	Frequency/period calculated from oscillations per minute	(1)	
	T = 0.22 s [can be seen on graph]	(1)	
	Use of $\omega = 2\pi f$		
	Or Use of $\omega = \frac{2\pi}{T}$	(1)	
	Use of $v = A\omega \sin \omega t$	(1)	
	$v = 1.1 \text{ m s}^{-1} \text{ [can be seen on graph]}$	(1)	
	At least 1 cycle of a sinusoidal graph with calculated values of v and T on axes	(1)	6
	Example of calculation $f = \frac{270 \text{ min}^{-1}}{60 \text{ s min}^{-1}} = 4.5 \text{ Hz}$ $\omega = 2\pi \text{ rad} \times 4.5 \text{ s}^{-1} = 28.3 \text{ rad s}^{-1}$		
	$v = \left(\frac{8.0 \times 10^{-2} \text{ m}}{2}\right) \times 28.3 \text{ s}^{-1} = 1.13 \text{ m s}^{-1}$		
19(b)(ii)	Use of $a = -\omega^2 x$	(1)	
	$a = 32 \text{ m s}^{-2} \text{ [ecf from (i)]}$	(1)	2
	Example of calculation $a = -(28.3 \text{ s}^{-1})^2 \times 4.0 \times 10^{-2} \text{ m} = 32.0 \text{ m s}^{-2}$		

19(b)(iii)	The particles are free to move inside the can	
	Or Not all the particles will move with simple harmonic motion	
	Or Amplitude/frequency/period of oscillation of particles is different to amplitude of can	
	Or The particles may continue to move upwards as the can starts moving downwards	
	Or The particles may collide with each other	
	Or the force on the paint particles is not equal to the force on the can. (1)	1
	Total for question 16	11

Question Number	Answer		Mark
20(a)	A massive nucleus splits into two (or more) smaller nuclei/fragments (of roughly equal mass and some neutrons)	(1)	1
20(b)(i)	Top line correct	(1)	
	Bottom line correct	(1)	2
	$^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu}$		
20(b)(ii)	Momentum is conserved (so the Ba nucleus recoils)	(1)	
	Energy released is shared (randomly) between the β^- and $\bar{\nu}$ Or the energy is shared between the 3 particles in the decay	(1)	2

20(c)(i)	Use of $N = \frac{\text{mass of caesium}}{\text{mass of caesium atom}}$	(1)	
	mass of caesium atom	` '	
	Use of 1 u = 1.66×10^{-27} kg	(1)	
	Osc 01 1 u = 1.00 \(\times 10 \) kg		
	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	$CSCOT \mathcal{H} = \frac{t_{1/2}}{t_{1/2}}$	(1)	
	$I_{I_{\alpha \alpha}} \circ f A = 1M$	(1)	
	Use of $A = \lambda N$		
	$A = 7.7 \times 10^{16} \text{ Bq}$	(1)	
	Valid conclusion based on calculated value of activity	(1)	
		(1)	6
	Example of calculation		
	$N = \frac{24 \text{ kg}}{(136.9 \times 1.66 \times 10^{-27}) \text{ kg}} = 1.06 \times 10^{26}$		
	$(136.9 \times 1.66 \times 10^{-27}) \text{ kg}$		
	ln 2		
	$\lambda = \frac{\ln 2}{(30.2 \times 3.15 \times 10^7)\text{s}} = 7.29 \times 10^{-10} \text{ s}^{-1}$		
	(00.2 * 0.20 * 20)0		
	$A = -7.29 \times 10^{-10} \text{ s}^{-1} \times 1.06 \times 10^{26} = -7.73 \times 10^{16} \text{ Bq}$		
	7.7×10^{16} Bq is not equal to 7.3×10^{16} Bq (so statement is incorrect)		
	Or 7.7×10^{16} Bq is approximately equal to 7.3×10^{16} Bq (so statement is		
	correct)		
20(c)(ii)	Use of 500 Bq per 100 g to calculate initial count rate	(1)	
	-34	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	$t = 5.37 \times 10^9 \text{ s} [171 \text{ year}] \text{ [ecf from (i)]}$	(1)	3
	1 = 3.37 × 10 3 [171 year] [cer from (1)]	(-)	
	Example of calculation		
	1		
	$A_0 = \frac{1}{4} \times 500 \text{ Bq} = 125 \text{ Bq}$		
	$A = \frac{150}{60 \text{ s}} = 2.5 \text{ Bq}$		
	$\begin{array}{c} 60 \text{ s} \\ 2.5 \text{ Bq} = 125 \text{ Bq} e^{-7.28 \times 10^{-10} \text{ s}^{-1} \times t} \end{array}$		
	$\begin{array}{c} 2.5 \text{ Bq} - 125 \text{ Bqe} \\ 2.5 \text{ Bq} \end{array}$		
	$\therefore \ln \frac{2.5 Bq}{125 Bq} = -7.28 \times 10^{-10} s^{-1} \times t$		
	$ \therefore t = \frac{-3.91}{-7.28 \times 10^{-10} \mathrm{s}^{-1}} = 5.37 \times 10^9 \mathrm{s} $		
	Total for question 20		14